Developing CWA 319 Work Plans

Project Goals & Objectives

Barry Tonning

Tetra Tech

Selecting the Waterbody

- Which river, stream, lake, or wetland do you want to focus on?
 - Do you have any assessment or monitoring data?
 - What do the data say?
 - How sure are you?

Management Practices

- List possible management practices
- Determine appropriateness
- Identify most likely candidates
- Consider cost, effectiveness
- Select preferred BMPs

Proposed management measures

- Pollutant reductions needed
 - Estimate quantitatively if possible
 - Measurements selected should make sense!
- BMP types proposed
 - What will lessen your 'loads'?
 - Applicable to your situation?
- BMP performance
 - How can you measure BMP impacts?
 - Use literature or actual values
- BMP installation sites
 - Which sites will hit the source(s)?
 - Are there critical areas to focus on?

Examples of Different Scenarios to Meet the Same Load Target

Source	Existing Phosphorus Loading (kg/y)	Scen	ario 1	Scenario 2	
		% Load Reduction	Allowable Load (kg/y)	% Load Reduction	Allowable Load (kg/y)
Roads	78	26	58	20	62
Pasture/Hay	21	26	16	10	19
Cropland	218	26	162	55	98
Forest	97	26	72	0	97
Landfill	7	26	5	0	7
Residential	6	26	5	0	6
Groundwater	111	26	83	0	111
Total	539	26	400	26	400

Selecting/prioritizing/targeting **BMPs**

- Importance of waterbodyDrinking water source, recreational resource
- Magnitude of impairment(s)
 - Level of effort needed; public interest/attention
- Existing loads (stressors & sources)
 - Magnitude, spatial variation, clustering
- Ability of BMPs to reduce loads
 - Sure thing, or a shot in the dark?
- Feasibility of implementation
 - Willing partners? Public support? Access?
- Additional benefits
 - Recreational enhancements, demonstration

References for determining BMP effectiveness

- Stormwater/Urban (BMP) Effectiveness database: Menu of
- Agriculture (Ag Management Measure document)
- Forestry (Forestry Management Measures document)
- Mining (Development document for proposed Effluent Guideline for Mining)

www.epa.gov/nps

www.epa.gov/owow/nps/agmm/index.html

Table 4d-6. Relative gross effectiveness^a (load reduction) of animal feeding operation control measures (Pennsylvania State University, 1992b).

Practice ^b Category	Runoff Volume	Total ⁴ Phosphorus (%)	Total ^d Nitrogen (%)	Sediment (%)	Fecal Coliform (%)
Animal Waste Systems*	reduced	90	80	60	85
Diversion Systems ^f	reduced	70	45	NA	NA
Filter Strips®	reduced	85	NA	60	55
Terrace System	reduced	85	55	80	NA
Containment Structures ^h	reduced	60	65	70	90

NA = not available.

- Actual effectiveness depends on site-specific conditions. Values are not cumulative between practice categories.
- Each category includes several specific types of practices.
 Total phosphorus includes total and dissolved phosphorus; total nitrogen includes organic-N, ammonia-N, and
- Includes methods for collecting, storing, and disposing of runoff and process-generated wastewater. Specific practices include diversion of uncontaminated water from confinement facilities.
- Includes all practices that reduce contaminant losses using vegetative control measures
- h Includes such practices as waste storage ponds, waste storage structures, waste treatment legoons.

Estimate technical and financial assistance needed

- Funding sources
 - Grants, contracts, donations
 - Supplemental Env. Projects
- Sources of technical assistance
 - Internal and external
 - Design/engineering services
 - Volunteer & other groups
- Regulatory or other authority
 - Health dept. planning/zoning
 - WHPP, SWPP, etc.
- Matching support sources
 - Outreach & education support
 - Be creative!

Develop a reasonably expeditious project schedule

- Who's going to do something?
- What are they going to do?
- Where will they do it?
- When will they do it?
- How will they do it?
- Lots of detail for the short term
- Less detail for long-term projects

Establish indicators & targets for management objectives

INDICATOR = measurable parameter used to evaluate relationship between pollutant sources and environmental conditions

TARGET = value of indicator that is set as the goal to achieve

19

Other types of indicators

- Environmental Indicators:
 - # of occurrences of algal blooms
 - miles of streambank restored or fenced off
 - % increase in "healthy-stream" critters
 - Increase in DO
 - # of waterbodies restored
- Administrative/programmatic indicators
 - # of BMPs installed
 - # of newspaper stories printed
 - # of people educated/trained
 - # of public meetings held
 - # of volunteers attending activities
 - # of storm drains stenciled

What should we monitor?

- Indicators that:
 - Characterize the watershed
 - Define and/or refine your understanding of the problem(s), such as water quality criteria violations, etc.
 - Show changes in targeted water quality or habitat conditions
 - Efficiently provide effective management information

21

Indicators & targets: short/long term

Solution Worksheet 12-2

Developing Criteria to Measure Progress in Meeting Water Quality Goals

[Note: Complete one worksheet for each management objective identified.]

Management Objective: Reduce nutrient inputs into Cane Creek by 20 percent

Indicators to Measure Progress	Target Value or Goal	Interim Targets		
1 Togicoo		Short-term	Medium-term	Long-term
P load	44 t/yr	52 t/yr	49 t/yr	44 t/yr
# of nuisance algae blooms	0	2	1	0
transparency	5.5 m	4.1 m	4.9 m	5.5 m
frequency of taste and odor problems in water supply	0	1	1	0
hypolimnetic DO	5.0 mg/L	2.5 mg/L	4.0 mg/L	5.0 mg/L

During implementation, remember:

- Plans are guides, not straitjackets
- Be aware of unforeseen opportunities
- Picking the low-hanging fruit is easy, but it helps to build a sense of progress & momentum
- If possible, work quietly for as long as you can on the most contentious issues

